-A188 683 SUB-SCALING OF PROJECTILE/TARGET SYSTEM DAMAGED BY
OCITY(U> COMPTEK CORP ALLENTOMN PR G C SIN
NAR 87 NTL-TR-87-17 DARG46-83-C-0861




Sl 4 o

- s - g o . B oy \-.--..... XX W% ...-- & e ]
ww & v l* LA L. > L P4 nF;A-s- ; ..A“. : ] f\h- “ r\f\' ! -, ’ , ’ d “N . f-. P lv\-\ ' 2E S |l~\l||.al-|lt
.. ) | : - s . A 4 Pats ” (N.FP o S LN L S L g
. ;'v 2\ . 5 .*n- h > IF «Pe’0 2 & 2 & 1. X A 4 44 1n
g- - f'l. . bt MY &F Wy by WY N . PLER SR S 8 Z. PR

,
!

. EEEER
; umgml_._._lm

1-4

—
—_—
—_—

Lﬂ

u

1

L oge
w

w

3

I

1-0
125

—
—
——

i
[ =
I




NN OWVIANLN U AN K

ONC FILE COPY
mg} AD

AD-A188 583

VMAICNIALD 1CVNivw LW

LABORATORY

MTL TR 87-17

SUB-SCALING OF PROJECTILETARGET SYSTEM
DAMAGED BY HYPERVELOCITY

March 1987

G. C. SIH
Comptek Corporation
Allentown, PA 18103

FINAL REPORT Contract No. DAAG46-85-C-0061

Approved for public release; distribution unlimited.

TG
LA CTERRY
% DEC 041987 B

Prepared for

U.S. ARMY MATERIALS TECHNOLOGY LABORATORY
Watertown, Massachusetts 02172-0001

'''''

TreR-

L

R

R

AL

cet AT, W
c'}nl.s& ).

A

-

o

b



UNCLASSLE LD

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Final Report

SUB- F
SCALING OF PROJECTILE/TARGET SYSTEM DAMAGED 8/28/85 through 9/30/86

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE perREAD INSTRUCTIONS —
. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT’S CATALOG NUMBER
MTL TR 87-17
4. TITLE (and Subtitle) 5. TYPE OF REPORY & PERIOD COVERED

BY HYPERVELOCITY - 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
G. C. Sih DAAG46-85-C~0061
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM _ MENT. PROJECT, TASK
X AREA & WORK UNIT NUMBERS
Comptek Corporation
2400 Schoenersville Road AMCMS Code: 69200R.897 A0S0
RD 4, Allentown, PA 18103
11. CONTROLLING OFFICE NAME AND ADDRESS '2. REPORT DATE
U.S. Army Materials Technology Laboratory March 1987
ATTN: SLCMT-ISC 13. NUMBER OF PAGES
Watertown, MA 02172-0001 54
14. MONITORING AGENCY NAME & ADDRESS(if different from Contralling Ollice) 15. SECURITY CLASS. (of thia report)
Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY wWOH ((Conllnue on reverse side il necessary and identily by block number)

!

Hypervelocity impact Fracture) Numerical analysis:
Scale models, Finite element ! Phase transformation &g
Damage Strain energy methods .

20. ABSTRACTY (Continue on reverse side I necessary and identify by block number)

(SEE REVERSE SIDE)

DD , 9™, 1473  ceoimion oF 1 nov 6515 oBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

A A A T T e T e e




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Daras Entered)

Block No. 20
ABSTRACT

Preliminary efforts are made to develop a methodology for analyzing the
progressive failure of projectile/target systems under hypervelocity impact.
Particular emphasis is placed on the thermal/mechanical interaction effects
not only for evaluating the change in the local strain rates and material
properties but also in finding the temperature and latent heat at which the
solid may locally transform intec liquid and/or gas. Such a transition can
be accurately determined by the inflection points on the time dependent
H-function curve that serves as a measure of the order and/.r disorder of a

physical system. \\\

Damage of a Luﬁgsten projectile with a 1:3.57 aspect ratio impacting a
5083 aluminum target with a 1:3 aspect ratio at 9,000 m/sec is evaluated.
Melting of the target material is predicted in the region directly underneath
the projectile cornér. Geometrically and metallurgically similar systems
scaled down one-half and one-quarter in size are also considered resulting
in damage zones that are not proportional. Such information is useful for
developing scaling relations even though the results are nonlinear functions
of the governing: parameters.

- 7 //:0//5*«’ .

-

UNCLASSTFIED

SECURITY CLASSIFICATION OF TwiS PAGE (When Data Frierey,

o

-
- -
S

L PSS

NP d
ey

et
(";-‘,‘l;: v, 14
A N S B Y

[




TABLE OF CONTENTS

FORWARD

I. INTRODUCTION

IT.  ENERGY DENSITY THEORY
2.1 Energy Conversion
2.2 Strain Function

2.3 Thermal/Mechanical Interaction

2.4 Phase Change

PROBLEM STATEMENT AND RESULTS

3.1 Initial Material Response

3.2 Image Mapping

SUB-SCALING OF PROJECTILE/TARGET SYSTEM
4.1 Geometric Proportionality

4.2 Response in Target

4.3 Response in Projectile

4.4 Local Damage in Target

ADDITIONAL REMARKS ON SCALING
REFERENCES

P A L)

AR R -"'-'.J.f‘.' -.'-‘.- RN R Ry
‘lq.. !‘. .'la.‘. A \ " w A " -.l- .‘.'.ﬂ‘ \ lr*h. D2l




FORWARD

This investigation on hypervelocity impact has been conducted by the
Comptek Corporation for the Army Materials Technology Laboratories in

Watertown, Massachussetts under Contract DAAG46-85-C-0061.
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I. INTRODUCTION

When a solid comes in contact with another at high speed, there prevails

i Y Iy 'Y PP -3

Tocally an extremely high rate of energy transfer. The initial kinetic
energy of the ﬁoving body is converted to different forms depending on the
impact speed, body geometry and size and material property. If the impact
velocity is sufficiently high, local material transformation can take place
such that the solid may melt or even vaporize in addition to damage by per-
manent deformation and/or fracture. Material transformation and failure
behavior are not only time varying but they are also location dependent.
Quantitative assessment of these processes is, to say the least, lacking.
There are still some distances from a full understanding of these processes
by the engineering community, particularly in the development of analytical
models which describe and characterize them in a way that can be used in
design. The overwhelming difficulties do not appear to be technical but
rather in overcoming preconceived ideas and theories that do not lend them-

selves to a consistent treatment of the physical phenomena in high speed impact.

One of the weaknesses of classical physics and mechanics when used to
characterize the behavior of solid, liquid and gas is that the theoretical
formulation relies upon a knowledge of the constitutive relation. As a result,
a hierarchy of theories has been developed, each is being applicable over

a certain range of stress, strain, strain rate, temperature and material type

such as elastic or plastic solid, inviscid or viscous fluid, perfect or
Van der Waal gas, etc. If in a single event, material behavior includes two
or more of the aforementioned types, then the adjoining of the different

theories and/or solutions in itself becomes a monumental task. There is no

B I N R e e e T e e e
ST, E TS WU P AT L L L P I S i B N




Vas @20 0 6.6 7%0" PYYRTRDSNY gug abeate gia=gie atorad atatat, “aiy h iy

lr.l.,l. ¥

*
hope for uniqueness unless a unified theory can be developed that can account
for all material behavior without making an a priori assumption on the knowl-

edge of the constitutive relation. s

Despite the extensive research efforts made on hypervelocity impact, it
is not difficult to include from past studies [4-6] that the traditional r
classical physics and mechanics approaches have not led to any in-depth under-
standing of the impact phenomenon. Recognized is the fact that a deformable

solid can undergo several stages of extreme mechanical behavior when subjected

4 Tadiu T SR8 P

s

to hypervelocity impact. In the vicinity of initial contact, the solid behaves

very much like a fluid because of the very high elevation of local pressure.
It is tempting at this stage to model the material behavior by Stokesian fluid o
or to use the Navier-Stokes theory of viscous flow. 1In so doing, however, the "
fluid/solid interaction and/or coupling effects are left out as the transforma-
tion of solid to fluid occurs only Locally while the surrounding projectile/
target material is still in the solid state. The inclusion of material rigidity
effects calls for the application of other theories, say the Prandtl-Reuss D
theory of elastic-plastic flow in conjunction with the von Mises yield condi-

* &
tion . Additional assumption on fracture criteria may have to be made as

e % Dl
S

failure of the projectile/target system in the final stages can involve crack

% %NS

propagation. Since the self-contained theories for materials at different

'+

*

Such an approach [1] has been developed in recent years and applied to
explain a number of previously not understood physical phenomena in material
damage. Predictions have been made for the SAFC-40R steel [2] and 6061-T6
aluminum [3] and the results agreed very well with experiments.

2 T

*k o |
Generalization of this condition to include dilatational effects would lead to
inconsistency in the plasticity theory that assumes the uniaxial data to
coincide with the effective stress and effective strain curve. One of the
inherent shortcomings of all classical mechanics thearies involving non-
lTinearity and/or dissipation is their inability to translate uniaxial data to
multiaxial states without invoking serious physical limitations.

-2- 5
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stages, yield conditions and fracture criteria are unrelated , their end
results would be independent. Any attempts made to connect the individual solu-

tions will involve arbitrariness and conditions that may not be consistent with

physical observations. In fact, a three-phase equation of state for metals

has been proposed [3] to account for material in the solid-liquid and 1iquid-
vapor region. Use was made of thermodynamics and many assumptions that are
subject to experimental verification. The work stopped short at predicting the

hydrodynamic behavior of a real material and called for the incorporation of

mechanical constitutive relations. To reiterate, material behavior under hyper-

velocity impact cannot be consistently explained by the classical piecemeal

approach,

Presented in this work is a methodology that can model the extremes of
material behavior in hypervelocity impact. Constitutive relations for each
element in the projectile/target system are developed according to the rate of
energy transmission and dissipation. A1l forms of energy involving heat, sound,
phase transformation, etc. are included in the theory without neglecting their
coupling effects. Thermodynamics and heat transfer should be an inherent**
part of mechanical deformation. Only in this way, a complete and consistent
description of the material in the solid, liquid and gaseous state can be given.

This knowledge is pertinent for developing subscaling relations for the hyper-

velocity impact of projectile/target systems. Compared are the damage behavior

*Energy used and dissipated during phase transformation of material in solid
state to the fluid state for example would not be accounted for.

* * *
The reason that thermal/mechanical coupling effects have not been satisfac-
torily treated up to now is because thermodynamics, heat transfer and mechan-

ical deformation are regarded as separate individual disciplines in classical
physics and mechanics.
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of full scale, half scale and quarter scale projectile/target systems. The

variations of geometric and kinematic parameters with target damage are also
discussed as the solid transforms into fluid in a local region. As the

complete time ‘history of material behavior under hypervelocity impact is made
available, sub-scaling tests can then be designed to simulate the conditions

of the full scale projectile/target system.
IT. ENERGY DENSITY THEORY

Energy can be converted from one form to another and this process is in-
herently irreversible. The conversion of mechanical work to heat, for example,
must necessarily involve energy dissipation that is unrecoverable. Even if
the process were carried out adiabatically by insulating the system, focal
irreversibility can still prevail as the collision of molecules will involve
energy loss. That is, each element within the system can be disturbed per-
manently. Local and/or global temperature change is the result. The a priori
assumption that the different forms of energy such as heat, sound, etc. can be
summed will encounter fundamental difficulties when analyzing coupling effects.

Nonlinearity in its entirety cannot be approached by adding more terms.

2.1 Energy Conversion

Without loss in generality, the energy density theory [1,2] considers
energy in two basic forms. The portion which has already dissipated and the
remainder that is still available. Energy conversion involves only the

exchange* of surface energy density (dW/dA)i (i = ¢,n,¢) and volume energy

As a special case, consider the equilibrium of a spherical liquid bubble of
radius R under uniform pressure p. Equation (1) yields the well known result
pR = 24 since dW/dV = p, dV/dA = R/2 and dW/dA = y, the surface tension of
the liquid.

-4-
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density dW/dV at a given tine t, i.e., :
diy _ odvy dW L N
(aA*)]- = (a;\‘)i v 1 T ganse (1)
Here, :,n and ¢ refer to the plane of homogeneity and are different from the
reference axes x,y and z. On this plane, the surface energy density is assuucd ;
to be the same in all three mutually perpendicular directions for a homogeneuvus .
and isotropic solid: f
) diy  _ dHy _ dW dul :
G = G, = @) - Gwlo (2) :
The value (dW/dA)O is referred to the uniaxial case. The condition in equation R
(2) as illustrated in Figure 1, of course, nust be modified for materials whos¢ N
internal structure may possess preferred directions. What is important is a :
krowledge of the relation between (dH/dA)i (i = £,n,¢) that establishes the :
plane of homogeneity. The quantity dW/dV in equation (1) is a scalar being g
invariant under rotation of coordinate axes. 1t follows that :
dvy _ dvy v dv '
(Gr)s = (@), = @~ (o (3) :
The change of volume with surface (dV/dA)i (i = €,n,5) on the plane of homo-
geneity are also connected. Equation (3) determines the relation between 3
(£.n,2) and (x,y,z) because the strain components in (dV/dA)i will be known 3
from a given deformation field. Refer to [2] for details.
2.2 Strain Function
K
The energy density theory requires only a knowledge of dV/dA as a ®
-5- :
()
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Figure 1. Plane of Homogeneity: Equal Surface Energy
Density for an Isotropic and Homogeneous Body
function of uniaxial strain for the solid, liquid or gas at the initial
reference state. For the fluid, strain may be expressed in terms of the
ratio of volume change to volume, i.e., aV/V. The subsequent behavior of
the system is determined directly from the load-time history. The strain

function
Fle) = [ x gf de (4)

plays a fundamental role in the energy density theory from which the volume

energy function in equation (1) can be obtained from a uniaxial strain state:
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P

XA

e r T T v

F Xy

oy XA



[a¥

W
f= S fle)de (5)

|

Qal

The parameter X can be adjusted such that f(e) may be identified with the uni-
axial stress o(e). This, however, is not a necessary requirement in the energy
density theory. In the case of multiaxial strain, equations (4) and (5) may be

referred to the plane of homogeneity and combined to yield

%¥'= /! *(%%)1d€id€i (i = eyn or ¢ with no sum on i) (6)

Because of equation (3), it suffices to compute dW/dV for i=¢ as follows:

dw dv
= [ Gk de dn, (7)

v

To be emphasized is that even though equation (7) contains only the normal
strain €g dW/dV is computed for an element in a multiaxial strain state

involving the influence of all the strain components via (dV/dA)_. This pro-
vides an unique means of identifying uniaxial and multiaxial data without

*
simplifying the physics of the problem .

The strain function defined in equation (4) corresponds to an uniaxial
strain state. In general, it may depend on the strain components g £ etc.
For an isotropic and homogeneous solid in two dimensions, the strain functicn

may be given by

*

The classical theory of plasticity assumes that the uniaxial data coincide
with the effective stress and effective strain curve. The dilatational effects
are thus neglected and cannot be accounted for by adding them into the yield
condition as it would lead to inconsistency in the formulation.

-7-
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£ £
fn = F € (8)
f&n G EEn

The functions

F = F[(dV/dA)g.eél, G = G[(dV/dA)g.eE] (9)

can be determined from the equations of motion.

2.3 Thermal/Mechanical Interaction

Classical thermodynamics associates irreversibility with entropy and heat
dissipation. Since energy dissipation may take place in so many different
forms, it is not justified to assume, in general, that dissipation is asso-

ciated exclusively with heat loss. Referring to Figure 2, the area under opq

is dW/dV or W and is divided into

D= (G, A=ED . 020 (1)

such that D corresponds to opp' and A to pgp'. The corresponding strains are

€ = e + ¢ - (11)

the dissipation energy density D must be a positive definite! function.

TThis condition can be used as a guideline for selecting the appropriate grid
size and time increment in numerical analysis.

-8-
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Figure 2. Uniaxial Stress and Strain Response I
-
Because of conservation of energy, it follows that N
N
dw = dD + dA, LA (12) >
dt > : .
K/

The rate of change of D with time is required to be a monotonically increasing

function of time.

*
Now, let A depend on the function H and uniaxial strain ¢ such that

A= A(H,.) (13)

—— :
For a multiaxial strain state, € on the plane of homogeneity may be used ¢

instead of «. =

-9- "4
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N Applying the rules of differentiation, equation (13) gives
A
_ ¢9A
: dA = (5—) dH + ( ) de (14)
1 Defining
A
‘ N
: o= (3., o= (&, (15)
[}
L}

. (5E)H = (§~) (16)

With the aid of equations (12), (14) and (15), a definition of the H function

js obtained:

- 40
?, -dH = e

(17)

The negative sign arises as work is assumed to be done on the systeﬁ rather
than as done by the system in classical thermodynamics. Equation (17) resem-
bles the classical definition of entropy as related to heat Q and temperature
N T. The quantity o may be scaled in °K as in the case of T and it becomes T
; only when energy dissipation occurs all in the form of heat, i.e., D = Q.

For a finite increment of strain ae, it can be shown from equations (16) and

A (17) that
!
80 Lud
CR (18)

, -10-




For an element in a multiaxial stress or strain state, equation (18) should be

referred to the plane of homogeneity so that

A
so _ Dogheg

© aD (19)

The temperature change at every point -in the system can thus be found without
*

invoking the separate discipline of heat transfer . Equation (19) reveals

the time nature of thermal/mechanical coupling that inherently involves energy

dissipation.

2.4 Phase Change

If the rate of energy transfer in a unit volume of material becomes
sufficiently intense, phase transitions in the form of melting, vaporization
and sublimation can take place. The transition is strain rate dependent, an
effect that is not considered explicitly in classical thermodynamics. Since
transition would alter the order and disorder of the system, it would appear
as an inflection point on the H versus time curve. A useful quantity for the
quantitative assessment of phase change is the strain rate of dissipation
energy density defined as

aD | aQ
Bde AV (20)

which reduces to aQ/aV only as a special case. The values of aQ/aV correspond-

ing to the onset of phase change for metals can be found in handbooks.

*Heat transfer by radiation, convection and conduction will all be included in
D. There is no need to invoke assumptions on the way with which heat and
temperature or temperature gradient are connected.

-11-




I1I. PROBLEM STATEMENT AND RESULTS

Suppose that a tungsten projectile traveling at 9,000 m/sec or 30,000
ft/sec comes in contact with a 5083 aluminum target plate as shown in Figure
3. Depending on the time interval at which the physical event is being
reviewed, the material will undergo deformation, damage, phase transition,

etc. The application of the energy density theory involves finding the dis-

Center
Line

—t

0.7 cm

30,000 ft/sec

Projectile

IR

Target

2 cm

Figure 3. Hypervelocity Impact of Projectile/Target System

placements that yield the strain field from which the plane of homogeneity
can be located. Unlike classiral continuum mechanics, the tractions and
inertia forces will interact as the rate change of volume with surface is no

longer assumed to vanish, i.e.,

-12-
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! 2
¢ n 373 v
p Ty = oy5n5 * 0 5ez (@), (21)

in which p is the mass density and n the normal to the plane on which the

g tractions ?i prevail. Here, oij.are the stress components that can be related to
! the strain function for each strain state through x. The displacement components
. are denoted by u, - It is important to recognize that even though (dV/dA)n in
; equation (21) may be small, the term p azui/at2 may be large in dynamic problems
.
4 3.1 Initial Material Response
As remarked earlier, only a knowledge of the initial mechanical and
; thermal properties is required. They are outlined in Table 1 for the tungsten
} projectile and 5083 aluminum target. The quantities in Table 1 will be
' defined as the discussion proceeds.
{ TABLE 1. Reference Mechanical and Thermal Properties
. of Projectile and Target
¢

: Parameter Tungsten 5083 Aluminum
3 E(GPa) 345 64.2
0, (HPa) 1,062 132.5
o (MPa) 1,347 260.8
(dW/dv) (MPa) 15.03 9.89
‘ (du/d) (N/m) 6.18x10" 2.09x10°
;a p(kg/m3) 19,350 2,700
; C,(9/kg°K) - usg 900
2 T (°K) 3,683 1,200
3 2Q(J/kg) 4.93x105 8.10x10°
3 40/6V(Pa) 9.64x10 2.21x107
X For the sake of illustration, Figures 4 and 5 display the family of

: 2
b
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Figure 4. Stress and Strain Data Bank for Tungsten Projectile
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*
stress and strain curves for tungsten and 5083 aluminum as the strain rates
are varied. They are referred to as the material data bank such that the
! base material serves as the reference state. Refinement of the data can be

b achieved by introducing a floating bank to the desired degree of accuracy.

The idea is that each point (oé,cé) on the plane of homogeneity can be
uniquely and accurately identified with a uniaxial stress and strain state

or [(dV/dA)g,eg]. The actual response of a given element in the projectile/
target system may not coincide with any of the curves shown in Figures 4 and Z.
It will most 1ikely follow a path that intersects the curves at several points
because the probability of any elements deforming at a constant strain rate
under impact is small. As it will be shown subsequently, the stress and
strain curves for elements near the region of impact will in no way resemble
those in Figures 4 and 5 for tungsten and aluminum in the solid state. In
fact, they will behave as viscous fluid because local melting has occurred.
This is illustrated in Figure 6 where the initial responses of the projectile
and target material are covered by the family of linear curves. The dotted
line is the actual response of an element in the fluid state determined auto-
matically. Phase transition is accounted for by the energy density theory.
There is no need to guess or anticipate the form of the constitutive relations
as required in the classical approach. The shapes of the stress and strain
curves selected in the material data bank are not essential as long as all the

points in the o, versus £ domain are uniquely identified with [(dV/dA)E, e.]).

3
The objective is to mathematically establish an one-to-one correspondence

between the stress and/or strain state of each element and its equivalent

—
tEach curve refers to a different strain rate.

-16-
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Figure 6. Response of Viscous Fluid Determined
From Material Data Bank For Solid
uniaxial state. It is simply a bookkeeping procedure. There is no longer the
need to obtain uniaxial data for different strain rates* except for the
initial response to be used as a reference. The energy density theony can
analytically deternmine the complete strhess and strain behavion §or any

strhain nates grom only a knowledge of the initial Young's modulus and the

specigied Loading nate. This has been done for the 6061-T6 aluminum’

-3 -1

stretched uniaxially at a strain rate of 10~ and 10"%sec

and the predic-

tion is within 5% of the experimental data [8].
3.2 Image Mapping

The projectile/target system is discretized by application of the twelve

(12) node isoparametric finite elements. Since the geometry in Figure 1

"For strain rates of 10 sec'] and higher considerable difficulties are

encountered experimentally in uniaxial tests. A review of the subject can
be found in [7].
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possesses one-half symmetry, it suffices to use 20 elements and 138 nodes

as indicated in Figure 7(a). As the boundary conditions along the plane of

symmetry cannot always be adequately satisfied numerically, the method of image

mapping will be adopted. Sixteen additional elements are added that simply
reflects the displacement field symmetrically across the center plane,
Figure 7(a). This will obviously provide more accurate results for elements
no. 15 and 17. Particular attention will be given to the results at points
1, 2 and 3 in the target and 4, 5 and 6 in the projectile, Figure 7(b). All
quantities referred to these locations will be averaged over a circular region
with diameter 0.02 cm. Computed are dW/dV and dW/dA contours in the pro-
jectile/target system for different time increments. Figure 8 displays the
volume energy density contours at t = 2 nsec. The contours are seen to be
densely packed near the corner with increasing magnitude. This is not
surprising because reentrant corners tend to concentrate energy. Even at this
very early stage of contact, energy has transferred to all elements in the
target. There prevails a five order of magnitude difference in the intensity
of the twenty one (21) dW/dV contours displayed in Figure 8. Similarly, the
surface energy density contours can also be plotted as given in Figure 9 at

= 2 nsec. Their distribution is similar to that of dW/dV in Figure 8. The
spread in the difference of the intensity of dW/dA, however, has increased by
one order of magnitude, i.e., the value of dW/dA for contour no. 1 differed
trom that of no. 21 by six order of magnitude. The surface energy density is
expected to dominate at initial impact because energy is transmitted across
the contact surface between the project and target before it can spread vol-
ume wise. An enlarged view of the dW/dA contours near the corner is shown

in Figure 10. This provides an insight into the shape of local region within

’
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Contour Values of dW/dV(Pa)
1 2.6x107° N 3.6x10°
2 3.6x10° 12 3.9
3 7.1 13 4.3
4 1.1x103 14 4.6
5 1.4 15 5.0
6 1.8 16 5.4
7 2.1 V7 5.7
8 2.5 18 6.1
9 2.9 19 6.4
10 3.2 20 6.8
21 7.1
(N (r’
G 5 — )
LL::L{"(A q!
‘ e
T

Figure 8. Constant Volume Energy Density
du/dV at t = 2 nsec

----------------
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Contour Values of dv/dA(Pa-m)
1 3.8x1072 1N 5.8x10°
2 5.8x10° 12 6.4
3 1.2x10° 13 7.0
4 1.7 14 7.6
5 2.3 15 8.2
6 2.9 16 8.7
7 3.5 17 9.3
8 4.1 18 9.9
9 4.7 19 1.0x10°
10 5.2 20 1.1
21 1.2
s
S G — 9
v,
% ("—’74
Q ‘L"’/éi*//:
p
Figure 9, Constant Surface Enerqgy Density
dVi/dA Contours at t = 2 nscc
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which the material may change phase. As time elapses to t = 4 nsec, energy
is being continuously transmitted from the projectile into the target. This
is evidenced by the increase in the intensity of the dW/dV and dW/dA contours
exhibited in Figures 11 and 12, respectively. An one order of magnitude
increase in the volume and surface energy density can be observed. Concen-
tration of energy remains in the vicinity of the corner. Figure 13 gives the

details of the dW/dA contours for t = 4 nsec.
IV. SUB-SCALING OF PROJECTILE/TARGET SYSTEM

Prior to performing sub-scaling tests of projectile/target systems, it is
necessary to establish the conditions or criteria under which geometric,
kinemati., material, damage and time parameters are to be proportioned or
scaled. Because energy dissipation during hypervelocity impact plays a
dominant role, scaling of the aforementioned parameters will be highly non-
linear. For the purpose of gaining insight into the physical problem, three

different projectile/target systems will be analyzed.

4.1 Geometric Proportionality

Shown in Figures 14(a), 14(b) and 14(c) are three different projectile/
target systems which shall be referred to as full scale (1:1), half scale (1:2)

and quarter scale (1:4), respectively. Geometric proportionality is assumed

such that
A_a_a . C_c.xy 5
B b F * D d % (22)

The masses mp, s mq and velocities vp, Vi» Vg can alter depending on the

-23-
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Contour Values of dW/dV(Pa)
1 2.0x107% n o 3.3xa0%
2 3.3x10° 12 3.6
3 6.6 13 4.0
4 9.9 14 4.3
5 1.3x10° 15 4.6
6 1.6 16 4.9
7 2.0 17 5.3
8 2.3 18 5.6
9 2.6 19 5.9
10 3.0 20 6.3
21 6.6
o
N e
“"?%/2 RE
O : 24/7/
Figure 11. Constant Volume Energy Density

dW/dv At t = 4 nsec
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1 s.3x07? N l.oxie®
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6 5.1 16 1.5
7 6. 17 1.6
g8 7.1 18 1.7
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Figure 12, Constant Surface Energy Density
dW/dA Contours At t = 4 nsec
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.Contour Values of dW/dA(Pa-m)

1 5.3x107% n
2 3.1x10° 12
3 6.3 13
4 9.4 14
5 1.3x10% 15
6 1.6 16
7 1.9 17
8 2.2 18
9 2.5 19
0 2.8 20

21

3
3
3
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4
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5
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Figure 13.

Constant Surface Energy Density dvl/dA
Contours On Enlarged Corner Region Of
Projectile/Target System At t = 4 nsec
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Figure 14. Sub-scaling of Projectile Target System

extent with which kinetic energy and/or momentum change affect material

damage.

Suppose that the systems in Figures 14(a) to 14(c) are scaled to preserve
the kinetic energy in addition to satisfying the conditions in equation (22).

This then requires

(23)

for the initial time step. Solving for the velocities of the sub-scale system

in terms of the full scale projectile velocity, it is found that

-27-




TR 0.5 TE.O 5
Vi, = (mh) Vo »o Vo T (=5) v, (24)
q
On the other hand, if momentum is to be conserved then
= = £
mpvp mhvp mqvq (25)
This yields
m 1 m_ 1
. = ._E. = (_.E
Vi (mh) Yy v Ve T G ) Vo (26)
q
In practice, the exponent on the mass ratio will neither be 0.5 or 1.0. That is
geometric proportionality will not conserve the projectile kinetic energy or
momentum. At any given instance of time, there will be a two parameter
scaling relation of the form
n
m._ 1
= P
I R (27)
for the half-scale system and
WE "2
q
for the quarter-scale system. The quantities k], k2 and nys Ny will depend
on the damage in the projectile/target system that changes with time.
4.2 Response in Target
If the three systems in Figures 14(a) to 14{c) are to experience approxi-
-28-
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mately the same damage at a given timef then the velocities vh and vq must
be scaled accordingly. After several trial runs, the initial velocities for
the half scale and quarter scale model in Table 2 were chosen. They are
lower than that of the full scale system. Otherwise, the scaled down

target will experience more damage at a given time. For the same matenial,
the energy concentration will be more severe for the smaller projectile/
target system because the distance between the corners are reduced. Figures

15, 16 and 17 show the variations of compressive stress o with compressive

TABLE 2. Projectile Velocity at t = 4 nsec
for Different Scaled Models

Initial Velocity at
Scale Velocity t = 4 nsec
(m/sec) (m/sec)
Full (1:1) 9,000 8,526.7
Half (1:2) 4,000 3,836.5
Quarter (1:4) 1,800 1,690.0

strain €. for the full scale, half scale and quarter scale system at t = 4
nsec at points 1, 2 and 3 as indicated in Figure 7(b), respectively. The
response corresponds to that for viscous fluid. Point 2 being directly under
the periphery of the projectile experiences higher stress and strain. HNext
in line is point 3 which is near the free surface of the target. The term-

inal points of the o, versus ¢  Ccurves in Figures 16 and 17 can be elevated

£
closer to those in Figure 15 for the full scale system if the initial veloc-
ities v, and Yy in Table 2 are increased accordingly. Only the initial

response of the base material were used to obtain the results in Figures 15

to 17. The corresponding numerical values are given in Table 3 for t = 2

and 4 nsec.

. —
Refer to detailed discussion in SectionV.
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And 3 In Target for t = 4 nsec And
Full Scale(1:1)
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TABLE 3. Stress and Strain on Plane of Homogeneity
at Point 1, 2 and 3 in Target

Falal . A aamfAdis . owWeaaahal jessB"

Point 1 Point 2 Point 3
Time  €.x107° o x10° ex1070 o x10° e 11070 o x10°
t{nsec) (cm/cm) (Pa) (cm/cm) (Pa) (cm/cm) (Pa)
Full Scale (1:1)
2 -0.08965 -0.08745 -0.1758  -0.1829 -0.1134 -0.1303
4 -0.1824 -0.3056 -0.3533 -0.5994 -0.2117 -0.4324
Half Scale (1:2)
\ 2 -0.07969 -0.07813 -0.1563 -0.1634 -0.1008 -0.1164
4 -0.1622 -0.2745 -0.3142 -0.5384 -0.1882 -0.3883
Quarter Scale (1:4)
2 -0.07172  -0.07095 -0.1407 -0.1484 -0.09069 -0.1057
4 -0.1460 -0.2516 -0.2827 -0.4934 -0.1694 -0.3559

By determining the path of local unloading, the available energy density
can be distinguished from the dissipation energy density for each load step.
The quantity D as defined in equation (10) can thus be found. Keeping in mind
that U and dD/dt must be positive*. The correct feature and trend of D is shown
in Figures 18(a) to 18(c) for the three different systems. Point 2 dissipates
more energy at t = 4 nsec than points 1 and 3. This trend remains valid for

= 2 nsec as given in Table 4. Once the time history of D is known, &D in

equation (19) follows immediately. With the aid of the data in Table 3 for
o, and € the temperature o in equation (18) can be calculated. The results

&
are plotted as a function of time in Figures 19(a) to 19(c) with % being

*

These conditions may not be satisfied on the first trial. Reéadjustment of
the finite element grid size compatible with the time increment is freauently
necessary. The optimum choice corresponds to diminishing oscillation of D
with time for small t.
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equal to 300°K. Even though all three points 1, 2 and 3 are beyond the
melting tenperature 0 = 1,200°K for the 5083 aluminum, the strain rate of
energy dissipation density aD/ae should be checked to see whether the material
elements at points 1, 2 and 3 have indeed melted or not. Refer to Table 5

for the numerical values of 0-0, - It is conceivable that &D/ae corresponding
to a unit volume of materia]* may pass the threshold of melcing only
momentarily and then drops below its critical value. According to the

results in Table 4, this is not the case. But rather, iD/aec at points 2

and 3 increased monotonically with time as it passes the threshold

LQ/aV = 22.1x106Pa as given in Table 1 for the 5083 aluminum. Pcint 1 remains
below the melting condition even though its temperature is near the melting
point. The transition of solid to fluid for a unit volume of material is
guaranteed when both o and aD/ac are maintained beyond the critical level

within a certain time period.

To be noted is that at the very early stage of impact, the phenomenon of
cooling and heating also occurs although its influence is negligible in com-
parison with the time history of the total impact process. This is similar

to that observed in {2,3] for metal specimens loaded uniaxially at low strain

rates.
4.3 Response in Projectile

Upon impact, the elements in the projectile also experiences compressive
stress and compressive strain. Referring to the plane of homogenecity, the
o, Versus ¢, relations for points 5 and 6 at t = 4 nsec are plotted in
Figures 21, 22 and 23. They represent, respectively, the full scale, half

scale and quarter scale as shown in Figures 14(a), 14(b) and 14(c). Again,

—
A unit volume of material &V used to calculate ~0/s. corresponds to a local

-

. . . “
region 0.02 ¢cm in diameter, n
-34- ~
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TABLE 4. Dissipation Energy Density and Strain Rate
Dissipation Energy Density at Point 1, 2
and 3 in Target

Point 1 Point 2 Point 3 . f
Time px10%  aD/aex108 0x10°  ap/aex10®  px10%  aD/aex10P :
t{nsec) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa) 5
Full Scale (1:1)
2 0.1625 4.12 0.6496 6.09 0.3259 5.43 3
4 1.3143 19.96 4.6087 38.20 1.9972 33.52
Half Scale (1:2)
2 0.1303 3.66 0.5204 5.32 0.2605 4.77
4 1.0575 18.05 3.7091 34.79 1.6048 30.73
Quarter Scale (1:4) N
2 0.1083 3.43 0.4318 5.0 0.2154 4.46 :
4 0.8841 16.94 3.3982 32.28 1.3394 28.58 i

TABLE 5. Temperature Change at point 1, 2 and
3 in Target

. Point I Point 2 Point 3
Time 0-0, 0-0, 0-0,

t(nsec) (°K) (°K) (°K) -

Full Scale (1:1) :
2 1,171 1,027 909 i
4 930 1,053 922 .

Half Scale (1:2) i
2 1,160 1,019 903 i
4 925 1,044 ?

Quarter Scale (1:4)

2 1,140 1,005
4 914 1,029
R
T e _::._ A R A M B S L A A




= - - X - ™
W W LW, - b b . i ad
) v ) Rl e ongn s en - i gl BN A il o

. u
; o
..I
--..A
: 39bae) U] € puy 2 ‘| JUL04 I -
£31suad ABuadu3 uoljedlssiy 40 Au03siy awt] "8l a4nbiy
P (p:1) aLeds Jazaend (2) (2:1) @1ed2s 41eH (q) (L:1) ateds {(n4 (e)
H. (d9su)3 aut] (o9su)3 auwr) (o9su)3 auwty
3 y £ 2 L 0 v ¢ 2 L 0
h | T T T
}
p|
t |A l { q4L o
: I
t+ [}
m —u
, S
1 1°¢ ¢ 4
E, 3
! 3
lu‘ rA
‘w 0
! 1]
| =
-]l ph
". 1€ -1¢€ -
A <
! <
o
bs 14 P
\I.V
- N %
3 47 - v =
3
4 ¢ - g -G

S O A — - .
—i>w® PV FESEES SWWWEWWWT VRISV STINS ST SN W W WY TP S EUEC LS S OO S aaaa -




g3 00"

4o002° L 30 d4niesddway bul (3 ultM 13bae} wnuiwnly €80G Ul

€ puy 2 ‘| 34ed 1y abuey)y a4njeuadwad; jQ £103SLyy dwt] "6l 4nbry

(p:1) 3eds 4ddenp (9) (2:1) ateds jLeH (q) : (L:1) ateas ((nd (°)

(oasu)3 awt] (oasu)3 suwi) (odsu)3 awt}

€ A L ... 0 0 14 € A U
1 00¢ 1 002 7

4 00v <1 00% 7

1 009 1 009 7

1 008 1 008 %

1 0001 7 0001 "o- B

10021 1 0021 1

. - oovl - 0ovl ;

anAL b o as g e .za:)wu;. o AR RRSITRN L o

2, %, A A 2y g

0
002
-~
3
00y &
D
[a¥]
pag
009 o
o
2
008 @
[¢+]
<
oooL o
=
0021
0oY1l

-37-




19b4e] u[ £ puy 2 ‘| utcd W A3isuag Abaau3
uotjedissig Abuaud ajey uLedisS jo A403SLH awi]

(p:1) @Leds 4334enh (9)

(d9su)3 aul]

ed

9

oLxiL-é¢

(2:1) areds 41eH (9)

(oasu)3 awry

Bdg0LXL"cc

oL

02

0¢

oy

0s

"02 34nbl

(1:1) aLeas (1n4 (@)

(oasu)3 awt}]

14 £

gd

otxt-ee

1

ol

0¢

0¢

0¥

0s

(ed)90[xav/av Ay1suap Abudua uoljedissip 3jed uLeulS

-38-

\I'

G A

-

s

» ,-v‘~l\f_ .

o




naldie b” 2.4 2% - Aty gt At at, gt (N 0, " et tad v ORI R !8 * v 1 B U R ® va) %l g% ol A ol -

L)
N -1.4 ¢ 6
: -1.2 Base material
y
y 1.0t
o
P =
- o
. S
N o
h) —
N v -0.8}
™ e}
’ [7,}
[72]
U
s~
Fu)
[%}
[« 3}
Z  -0.6 F
[7,}
- (7]
[o5]
| &8
" g
(=]
! ()
- -0.4 | 5
. 0.2
. ///// Initial response
1 N \ \ 1
0 -0.2 -0.4 -0.6 -0.8 -1.
3y . . -3
d Compressive strain c€x10 (cm/cm)
L)
e Figure 21. Local Stress And Strain Response At Point 5
; and 6 in projectile for t = 4nsec And
Full scale (1:1)
-39-
{
o«
]
Y
o
;)




- -

-1.4 ~

-1.2 -
-1.0 |-
&
cav
O
;u
o -0.8 -
n
n
QU
}
)
n
(3]
-
o -0.6 |
[«F}
L .
(=%
|53
(=]
Q
0.4
5
-0.2

Initial response

Base Material

1

Figure 22.

R R O e R LA R SR PO
ﬁ&isﬁi«(ﬂivhﬁﬁﬁ.&-& .

-0.2 -0.4

Compressi

Half Scale

ve strain e€x10—3(cm/cm)

Local Stress And Strain Response At Point 5
And 6 In projectile For t = 4 nsec And

(1:2)

-40-

-0.6



VX

6 Base material
-1.0
2
=
o
r;\-l
© -0.8
)
S
(5}
=~
g -0.6 [
W
3 Q.
E
%‘ 5
ll -0.4 L
- 5
¥
-0.2 [
i:lnitial response
1 1 1 1 J
o | -0.2 -0.4 -0.6 -0.8 1.0

Compressive strain ch]O'B(cm/cm)
Figure 23. Local Stress And Strain Response At Point 5
: And 6 In Projectile For t = 4 nsec And
5 Quarter Scale (1:4)

-41-




..............
..........................

) only the initial response of tungsten or base material is used. The corner
element in the projectile corresponding to point 6 in Figure 7(b) is
stressed far beyond point 5 just inside the projectile. Both curves labelled

4 5 and 6 in Figures 21 to 23 are slightly nonlinear. This effect will become

more obvious when damage begins to take place at the later stages. For
details, reference can be made to Table 6 for the numerical values of o, and

€ including those at t = 2 nsec. The dissipation energy density D as a

function of time is given in Figures 24(a) to 24(c). In all cases, D increased
slowly at first and then rises very quickly. This trend is particularly pro-
nounced for point 6 even though the elapsed time is only 4 n sec. The

TABLE 6. Stress and Strain on Plane of Homogeneity
at Point 5 and 6 in Projectile

Point 6 Point 5
Time e€x10'3 o x]O8 e£x10'3 ogx16§
t(nsec) {cm/cm) (Pa) {cm/cm) (Pa)

Full Scale (1:)

2 -0.0762 -0.3981 -0.0198 -0.1141

4 -0.1635 -1.3548 -0.0387 -0.3653
Half Scale (1:2)

2 -0.0677 -0.3557 -0.0176 -0.1019

4 -0.1454 -1.2168 -0.0344 -0.3280
Quarter Scale (1:4)

2 -0.06097 -0.3230 -0.01585 -0.09256
4 -0.1309 -1.1159 -0.03097 -0.3007

dissipation at point 5 is relatively low as shown by the values in Table 7.

Plotted in Figures 25(a) and 25(c) are the time histories of the temperature
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o TABLE 7. Dissipation Energy Density and Strain Rate

a Dissipation Energy Density at Point 5§ and

: 6 in Projectile

! Point 6 Point 5

; . 3 6 3 6

D, Time Dx10 AD/6ex10 Dx10 AD/ bex10

;;, t(nsec) (Pa) (Pa) (Pa) (Pa)

‘ Full Scale (1:1)

. 2 0.5151 12.82  0.04532 3.27

’,

b 4 4.0931 76.70 0.2756 24.43

Half Scale (1:2)

’ 2 0.413 11.56  0.03625 3.30

-,

M ' 4 3.2967 69.49  0.2216 22.32

. Quarter Scale (1:4)

: 2 0.3435 10.91 0.03003 3.10

- 4 2.7646 62.30  0.1855 20.68

- change at points 5 and 6 in the projectile. A sign change in 0-0, is again
. observed for small time. The temperature rose quickly in all the cases and

then began to level off for t > 2 nsec. The plateaus of all the curves is
2 substantially below the melting point of tungsten which occurs at 3,683°K as
0 given in Table 1. Refer to Table 8 for numerical values of 0-0,- Finally,
\1
Figures 26(a) to 26(c) show the variations of aD/ae with time. A1l the curves

. are below the threshold level of aQ/aV = 96.4x106Pé for tungsten. MNo melting
g takes place in the projectile. Table 7 reveals that the highest aD/ae value
: is 76.70x106Pa and this occurred at point 6 for t = 4 nsec.
."
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TABLE 8. Temperature Change at Point 5 and 6 in
Projectile

Point ¢ Point 5
Time O—Oo O-Oo
t{nsec) (°K) (°K)
Full Scale (1:1)
2 1,181 1,000
4 1,085 1,028
Half Scale (1:2)
2 ' 1,169 992
4 1,076 1,021

Quarter Scale (1:4)

2 1,149 979
4 1,059 1,007

4.4 Local Damage in Target

From the results in Sections 4.2 and 4.3 it can be concluded that only
the target material next to the projectile corner is being damaged. 'The
material in fact has locally undergone a phase transition where the solid
has melted and turned into fluid. Such a behavior is reflected by the stress
and strain curves in Figures 15 to 17. The shaded reqions in Figures 27(a)
to 27(c) are zones in which the solid has melted. Their volumes and areas
denoted by Vm and Am’ respectively, are estimated and given in Table 9. The
ratio Vm/Am 1s the largest for the full scale system and the smallest for the

quarter scale system. Their relative difference will change with time in a

-
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TABLE 9. Size of Melted Target Region at

t = 4 nsec
VoTume Area Ratio Tinpact Velocity
Scale 3 2 3
Vm(cm ) Am(cm ) Vm/Am(cm) m/sec ] i
Full (1:1) 0.1325 0.9843 0.1346 9,000
Half (1:2) 0.0231 0.4528 0.0510 4,000
Quarter (1:4) 0.00391 0.1870 0.0209 1,000

nonlinear fashion. The complexities arising from the interaction of the
geometric and kinematic parameters with damage have been clearly established.
Any conclucions prior to a complete knowledge of the time damage process of f

the different scaled down systems would be premature.

V. ADDITIONAL REMARKS ON SCALIHNG

The foregoing results provide sufficient evidence to the fact that damaye

caused by hypervelocity impact depends upon the complex interaction of

several variables. There exists no simple laws of scaling. Geometric propor- 3
tionality alone will not preserve the damage behavior of the projectile/ :
target system. This can be demonstrated by solving the half scale problem

with the projectile traveling at the same velocity as in the full scale casec.

Refer to the situations depicted in Figures 28(a) and 28{(b), For the same
projectile velocity of 9,000 m/sec or 30,000 ft/sec, it will be shown that
the target damage in the half scale system will in no way resemble that of

the full scale system at t = 4 nsec. This difference will increase with time.

Referring to the data in Table 10 and the sketches in Figures 28(a) and p
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TABLE 10. Damage Zones for Full and Half Scale
Projectile With the Same Initial
Velocity of 9,000 m/sec and t = 4 nsec

Volume Area Ratio

Scale Vm(cm3) Am(cmz) V. /A, (em)
Full (1:1) 0.1325 0.9843 0.1346
Half (1:2) 0.1438 0.9940 0.1461

28(b), the damaged zone size for the scaled down model is larger than that of

the full size model. The data in Table 11 also show that the elements at

points 1, 2 and 3 in the half scale mode are all in the fluidic state while

TABLE 11. Dissipation Energy Density and Strain Rate
Dissipation Energy Density at Point 1, 2
and 3 in Target for Half Scale System (1:2)
with Vi, = 9,000 m/sec

Point 1 Point 2 Point 3
Time Dx103  a0/sex10° ox10°  a0/aex10®  px10°  aD/acx10
t{nsec) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa)
2 0.6594 8.36 2.6342  12.20 1.3191 10.89
4 5.3501 40.67 18.7635  78.27 8.1179  .68.96

point 1 remains unmelted in the full scale model where aD/Ae is below the
critical value of 4Q/aV for tungsten. Moreover, the strain rate of energy
dissipation in the half scale model is more intense. At point 3, a simple
calculation shows that (AD/AC)]:Z/(AD/AE)]:] = 2.1 which is a factor two

difference.

It is instructive to compare the normalized volume and surface area

ratio of the damage zones for the full scale and half scale system
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impacted at the same velocity. Making use of the dimensions specified and

the data in Table 10, the following results are obtained:

(levo)1:2 _ . (Am/Ao)1:2 _
(V;7VETYTT.- 2.17 s lﬁ;7ﬁ;7;?;“'_ 2.02 {29)

l“liT‘l 71?1.‘1‘711‘-’7 s ’l."""~‘

where Vo and A0 are the respective volume and area of the target. The
normalized damage zone for the full scale and half scale differed by a factor
of approximately two at t = 4 nsec. The difference will obviously alter with

time.

The velocity of the projectile alone does not control the extent of
target damage. In other words, the same degree of damage can be produced in
a sub-scale model even though the projectile may be traveling at a much lower
speed. Returning to the example discussed earlier in Section IV where the
velocity of the half scale projectile was 4,000 m/sec rather than 9,000 m/sec.
The damage zone at the same instance is more localized as shown in Figure
27(b). Making use of the data in Table 9, the normalized volume and area

ratio of the full scale and half scale become

(Vm/vo)1:2 _ . (Am/Ao)]:Z _
(V;7V;7;7;'- 0.348 d Am/Ao . = 0.920 (30)

Although the volume ratio is much less than unity, the surface one ratio is
nearly one. The relative size of the damage area is being preserved at

t = 4 nsec. Comparison of (AD/AE)]:Z and (AD/AC)]:] can also be made for
the element say again at point 3. From the data in Table 4, (AD/AC)]:Z/
(;D/AL)]:] = 0.917 at t = 4 nsec. The strain rate of dissipation is being

preserved. HNearly the same ratio also prevails for points 1 and 2. Should
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the damage be preserved for the entire time history, then the time variable

must be normalized and scaled accordingly.

No useful information would be gained in scaling if the extremes of the
geometric and kinematic parameters were chosen while emphasizing only the
post mortem damage pattern or damage at any other specific time instance.
Beyond certain combination of the projectile speed and target plate thickness,
the resulting hole size in the target will be geometrically proportional to
the projectile diameter. This represents the situation of overkill where the
target no longer plays a sensitive role in the penetration process. In other
words, most of the energy remains in the projectile as it passes through the
target only a small portion of which is used to damage the material surrounding
the hole. If this difference between the full scale and sub-scale system is to

be neglected, then scaling is no longer the issue.
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